A Symbolic Approach to Safety LTL Synthesis

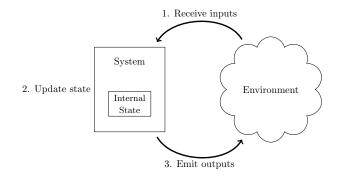
Shufang Zhu ¹ **Lucas M. Tabajara** ² Jianwen Li ² Geguang Pu ¹ Moshe Y. Vardi ²

¹East China Normal University

²Rice University

Safety LTL Synthesis

Reactive Synthesis



Goal: Automatically design reactive systems that are guaranteed to follow a temporal specification.

LTL Synthesis

Linear Temporal Logic (LTL):

$$\begin{split} \varphi ::= \top \mid \bot \mid p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid X\varphi \mid \varphi_1 R\varphi_2 \mid \varphi_1 U\varphi_2 \\ G\varphi \equiv \bot R\varphi \qquad F\varphi \equiv \top U\varphi \end{split}$$

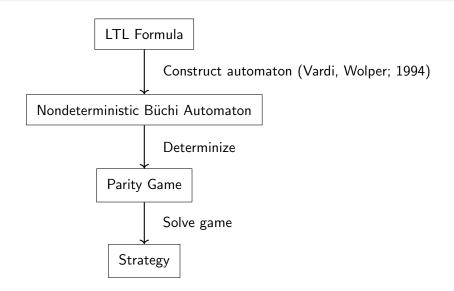
LTL Synthesis:

Given: LTL formula φ over a set of propositional variables $\mathcal{P} = \mathcal{X} \cup \mathcal{Y}$

- ► Input variables: X
- Output variables: $\mathcal Y$

Obtain: Set of states S and strategy $g : 2^{\mathcal{X}} \times S \rightarrow 2^{\mathcal{Y}} \times S$ such that every trace satisfies φ .

Classical Approach to LTL Synthesis



Synthesis of LTL Fragments

LTL synthesis remains a challenging problem:

- ► 2EXPTIME theoretical complexity.
- Lack of scalable algorithms for determinization and solving games.

Solution: Focus on synthesis procedures for fragments of LTL.

Example: Generalized Reactivity(1) (GR(1)) fragment:

 $(\theta^{e} \land G\rho^{e} \land GF\varphi_{1}^{e} \land \ldots \land GF\varphi_{m}^{e}) \rightarrow (\theta^{s} \land G\rho^{s} \land GF\varphi_{1}^{s} \land \ldots \land GF\varphi_{n}^{s})$

▶ GR(1) games can be solved in time cubic in size of game graph.

Other easier fragments of LTL?

Lucas M. Tabajara (Rice University)

Synthesis of LTL Fragments

LTL synthesis remains a challenging problem:

- ► 2EXPTIME theoretical complexity.
- Lack of scalable algorithms for determinization and solving games.

Solution: Focus on synthesis procedures for fragments of LTL.

Example: Generalized Reactivity(1) (GR(1)) fragment:

 $(\theta^{e} \land G\rho^{e} \land GF\varphi_{1}^{e} \land \ldots \land GF\varphi_{m}^{e}) \rightarrow (\theta^{s} \land G\rho^{s} \land GF\varphi_{1}^{s} \land \ldots \land GF\varphi_{n}^{s})$

▶ GR(1) games can be solved in time cubic in size of game graph.

Other easier fragments of LTL? Safety LTL

Lucas M. Tabajara (Rice University)

Safety LTL Synthesis

"Bad things don't happen"

Safety property:

pRq

(q doesn't become false until after p becomes true)

Non-safety property:

$$G(r \rightarrow Fg)$$

(every request is eventually granted)

"Bad things don't happen"

Safety property:

pRq

(q doesn't become false until after p becomes true)

Safety property:

$$G(r \rightarrow (g \lor Xg \lor XXg))$$

(every request is granted within two time steps)

"Bad things don't happen"

Safety property:

pRq

(q doesn't become false until after p becomes true)

Safety property:

$$G(r \rightarrow (g \lor Xg \lor XXg))$$

(every request is granted within two time steps)

All eventualities are bounded.

Lucas M. Tabajara (Rice University)

Safety LTL Synthesis

Bad prefix

For a given temporal formula φ , a finite trace $\pi = \pi_1 \pi_2 \dots \pi_n$ is a *bad* prefix if π cannot be extended to a satisfying trace.

 $\varphi = pRq$

$$\{q\},\{q\},\ldots,\{q\},\{p,q\},\{p\},\ldots\models\varphi$$

 $\{q\}, \{q\}, \ldots, \{q\}, \{\}, \{p\}, \ldots \not\models \varphi$

A temporal formula φ is *safe* if every trace that does not satisfy φ has a bad prefix.

Purely *syntactical* sufficient condition for safety:

Theorem (Sistla; 1994)

If φ is an LTL formula in Negation Normal Form and φ is Until-free, then φ is safe.

Allows us to define an LTL fragment that guarantees safety.

Safety LTL

Linear Temporal Logic (LTL):

 $\varphi ::= \top \mid \perp \mid p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid X\varphi \mid \varphi_1 R\varphi_2 \mid \varphi_1 U\varphi_2$

Safety LTL:

$$\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid X\varphi \mid \varphi_1 R\varphi_2$$

Safety LTL corresponds to the fragment of **Until-free** LTL formulas in **Negation Normal Form**.

Synthesis of the Safety LTL Fragment

Safety LTL Synthesis:

Given: Safety LTL formula φ over a set of propositional variables $\mathcal{P} = \mathcal{X} \cup \mathcal{Y}$

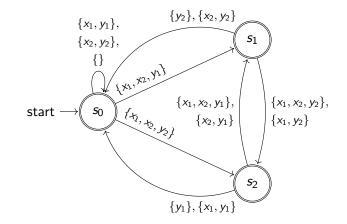
- ▶ Input variables: X
- Output variables: *Y*

Obtain: Set of states *S* and strategy $g : 2^{\mathcal{X}} \times S \rightarrow 2^{\mathcal{Y}} \times S$ such that every trace satisfies φ .

Our work: Safety LTL synthesis can be reduced to safety games.

Deterministic Safety Automata (DSA)

Every Safety LTL formula can be converted to a DSA:

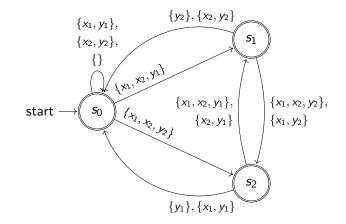


Büchi with partial transition function and all states accepting.

Safety LTL Synthesis

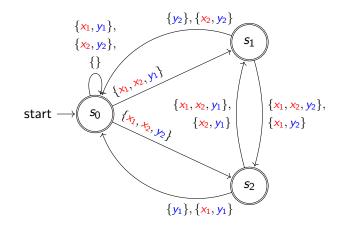
Deterministic Safety Automata (DSA)

Every Safety LTL formula can be converted to a DSA:



Run is accepting iff never takes an undefined transition (bad prefix).

Safety Games



• *Environment* controls input variables \mathcal{X} , wins if automaton rejects.

► System controls output variables *Y*, wins if automaton *never* rejects.

Safety LTL Synthesis

Safety Games for Safety LTL Synthesis

Winning strategy for the system encodes solution to Safety LTL synthesis:

System wins \Rightarrow Automaton never rejects

- $\Rightarrow \ \, \text{No undefined transition}$
- \Rightarrow No bad prefix
- \Rightarrow Formula is satisfied

Safety games can be solved efficiently: linear time in size of game graph.

Our goal: Efficient techniques for Safety LTL synthesis via safety games.

Key idea: Reduce safety games to Horn-SAT.

Horn-SAT

Given a boolean formula $\varphi = \varphi_1 \wedge \ldots \wedge \varphi_m$ where every φ_i is of the form $(p_1 \wedge \ldots \wedge p_n) \rightarrow q$, is φ satisfiable?

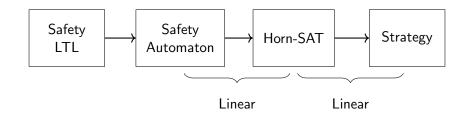
Horn-SAT can be solved in linear time by SAT solvers using constraint propagation.

First Approach: Horn-SAT

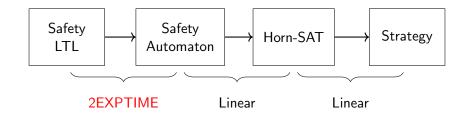
Key idea: Reduce safety games to Horn-SAT.

- 1. Use SPOT (Duret-Lutz, et al; 2016): LTL to Büchi automata.
 - Safety LTL is special case of LTL.
 - Safety automaton is special case of Büchi automaton.
- 2. Encode safety game as Horn formula.
 - Satisfying assignment encodes winning strategy.
- 3. Solve Horn-SAT using SAT solver.

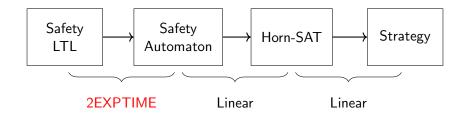
The State Explosion Problem



The State Explosion Problem



The State Explosion Problem



Solution: Represent the safety automaton symbolically using Binary Decision Diagrams (BDDs).

- State space of size *n* encoded using $\log_2(n)$ boolean variables \mathcal{Z} .
- Every state represented by an assignment 2^Z.
- ▶ Transition function as boolean function $2^{\mathcal{X}} \times 2^{\mathcal{Y}} \times 2^{\mathcal{Z}} \rightarrow 2^{\mathcal{Z}}$.

Second Approach: Symbolic Safety LTL Synthesis

Key idea: Leverage tools for symbolic construction of automata over *finite* words.

- MONA (Henrikson, et al; 1995): First-Order Logic over *finite* words to symbolic Deterministic Finite Automata (using BDDs).
- Safety LTL: like LTL, interpreted over *infinite* words.
- However: every falsifying trace of φ has *finite* bad prefix.

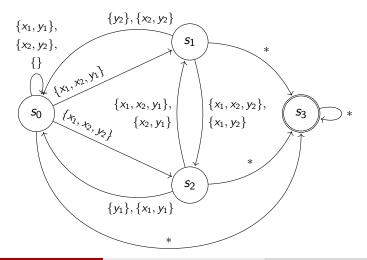
 $\{q\}, \{q\}, \dots, \{q\}, \{\}, \{p\}, \dots \not\models pRq$

• Therefore: can translate $\neg \varphi$ to FOL over *finite* bad prefixes.

Safety LTL Synthesis

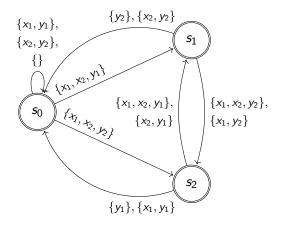
Finite Automaton to Safety Automaton

MONA constructs DFA for the bad prefixes of φ :



Finite Automaton to Safety Automaton

By deleting bad states, we can view DFA as DSA for φ :



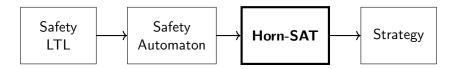
Symbolic Safety LTL Synthesis

Given Safety LTL formula φ :

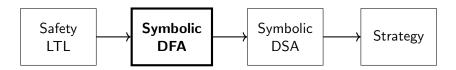
- 1. Use MONA to construct symbolic DFA for bad prefixes of φ .
- 2. Interpret symbolic DFA as symbolic DSA.
- 3. Compute winning states as a fixpoint:
 - 3.1 Start with set of all accepting states.
 - 3.2 At each step, remove states where Environment can move to bad state.
 - 3.3 Stop when fixpoint is reached.
- 4. Compute strategy as a boolean function using boolean-synthesis procedure (Fried, **Tabajara**, Vardi; CAV'2016).

Two Approaches for Safety LTL Synthesis

Explicit synthesis framework:



Symbolic synthesis framework:



Comparison between:

- Explicit approach using Horn-SAT.
- ► SSYFT tool implementing symbolic approach.
- ▶ LTL Synthesis tools UNBEAST (Ehlers; 2010) and ACACIA+ (Bohy, et al; 2012).

Benchmarks

LoadBalancer formulas from (Ehlers; 2010):

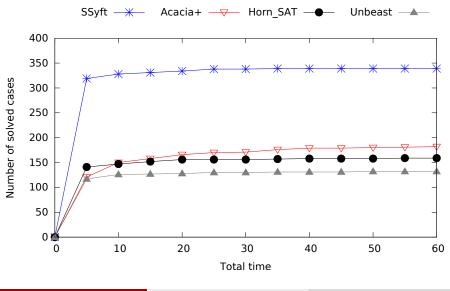
- Converted to Negation Normal Form.
- Since not all formulas are safe, expanded Until operator:

```
Not safe: \varphi_1 U \varphi_2
Expansion length 0: \varphi_2
Expansion length 1: \varphi_2 \lor (\varphi_1 \land X \varphi_2)
Expansion length 2: \varphi_2 \lor (\varphi_1 \land X (\varphi_2 \lor (\varphi_1 \land X \varphi_2)))
```

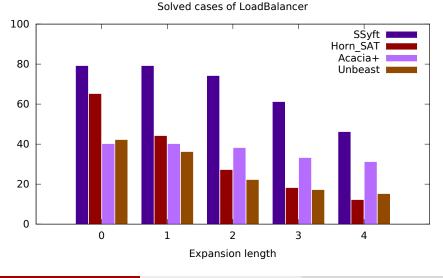
Varied expansion length.

. . .

Symbolic Approach Dominates



Symbolic Approach Dominates



Lucas M. Tabajara (Rice University)

Safety LTL Synthesis

November 15th, 2017 22 / 25

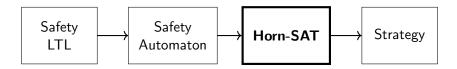
- Contribution: Two frameworks for Safety LTL synthesis explicit and symbolic.
- Results: Symbolic framework outperforms tools for general LTL synthesis.
- Conclusion: Can benefit from focusing on specific LTL fragments for synthesis.

Future Work

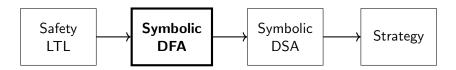
- On-the-fly synthesis to avoid bottleneck of automaton construction.
- Comparison with other LTL fragments, such as GR(1) (Bloem, Jobstmann, Piterman, Pnueli; 2012).
- Safety games as a subproblem of general LTL synthesis.

Questions?

Explicit synthesis framework:



Symbolic synthesis framework:



Extra Slides

Safety LTL vs. GR(1)

GR(1) formula:

$$(\theta^{e} \land G\rho^{e} \land GF\varphi_{1}^{e} \land \ldots \land GF\varphi_{m}^{e}) \rightarrow (\theta^{s} \land G\rho^{s} \land GF\varphi_{1}^{s} \land \ldots \land GF\varphi_{n}^{s})$$

- For $\alpha \in \{e, s\}$:
 - ▶ θ^{α} : Safety
 - $G\rho^{\alpha}$: Safety
 - $GF\varphi^{\alpha}$: Non-safety

A GR(1) formula with m = n = 0 is a safety formula.

Safety Game to Horn-SAT

Given a Safety Automaton $\mathcal{A} = (2^{\mathcal{P}}, S, s_0, \delta)$, build a Horn formula where:

Variables encode bad states:

 b_s : s is a losing state for the System $b_{(s,X,Y)}$: Y is a losing move of the System on state s for input X

Constraints encode bad transitions:

$$b_{(s,X,Y)}$$
, for $\delta(s,X\cup Y)$ undefined (1)

$$b_{s'} \rightarrow b_{(s,X,Y)}, \quad \text{for } \delta(s,X \cup Y) = s'$$
 (2)

$$\left(\bigwedge_{Y\in\mathcal{Y}} b_{(s,X,Y)}\right) \to b_s, \quad \text{for every } s\in S, \ X\in 2^{\mathcal{X}}$$
(3)
$$b_s \to \bot$$
(4)

$$p_{s_0} \to \perp$$
 (4)